Centrosymmetric Solutions to the $N+k$ Queens Problem

Chatham, Doyle, Jeffers,
Kosters, Skaggs, and Ward

Recreational Mathematics CPS
MAA MathFest
Lexington KY
August 6, 2011

N Queens Problem

- n queens on $n \times n$ chessboard
- no two queens are on same row, column, or diagonal

Figure: Solution to 5 queens problem

$N+k$ Queens Problem

- $n+k$ queens, k pawns on $n \times n$ chessboard
- pawn between queens in same row, column, or diagonal

Figure: Solution to $8+2$ queens problem

Symmetries

A solution to an $n+k$ queens problem can be centrosymmetric (symmetric wrt 180-degree rotations, but not 90-degree rotations)

Symmetries

A solution to an $n+k$ queens problem can be doubly centrosymmetric (symmetric wrt 90-degree rotations)

Symmetries

A solution to an $n+k$ queens problem can be ordinary (neither centrosymmetric nor doubly centrosymmetric)

Symmetries

A solution to an $n+k$ queens problem can be ordinary (neither centrosymmetric nor doubly centrosymmetric)

No solution (with $n>1$) is symmetric with respect to reflection.

Centrosymmetric solutions

- No such solutions if n even and k odd

Centrosymmetric solutions

- No such solutions if n even and k odd
- If n odd and k even, queen in central square

Centrosymmetric solutions

- No such solutions if n even and k odd
- If n odd and k even, queen in central square
- If n odd and k odd, pawn in central square

Centrosymmetric solutions

- No such solutions if n even and k odd
- If n odd and k even, queen in central square
- If n odd and k odd, pawn in central square
- Even number of solutions

Doubly centrosymmetric solutions

- Either
- $n \equiv 0(\bmod 4)$ and $k \equiv 0(\bmod 4)$,
- $n \equiv 1(\bmod 4)$ and $k \equiv 0(\bmod 4)$, or
- $n \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 4)$

Doubly centrosymmetric solutions

- Either
- $n \equiv 0(\bmod 4)$ and $k \equiv 0(\bmod 4)$,
- $n \equiv 1(\bmod 4)$ and $k \equiv 0(\bmod 4)$, or
- $n \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 4)$
- No doubly centrosymmetric solution to $n+1$ queens problem

Powers of 2 in solution numbers

Proposition

Suppose $n=4 s$ with $s \geqslant 2, k=4 t$, and $n \geqslant 7 k$. Then the number of doubly centrosymmetric solutions to the $n+k$ queens problem is divisible by $2^{s-7 t}$.

Figure: Note outer ring of squares

Powers of 2 in solution numbers

Proposition

Suppose $n=4 s$ with $s \geqslant 2, k=4 t$, and $n \geqslant 7 k$. Then the number of doubly centrosymmetric solutions to the $n+k$ queens problem is divisible by $2^{s-7 t}$.

Figure: Note outer ring of squares

Powers of 2 in solution numbers

Proposition

Suppose $n=4 s+1$ with $s \geqslant 4, k=4 t$, and $n \geqslant 7 k$. Then the number of doubly centrosymmetric solutions to the $n+k$ queens problem is divisible by $2^{s-7 t}$.

Powers of 2 in solution numbers

Proposition

Suppose $n=4 s+3$ with $s \geqslant 3, k=4 t+1$, and $n \geqslant 7 k$. Then the number of doubly centrosymmetric solutions to the $n+k$ queens problem is divisible by $2^{s-7 t-1}$.

Different symmetries for diff. pieces

Figure: $14+4$ queens solution, queens centrosymmetric, pawns ordinary

Different symmetries for diff. pieces

Figure: $7+2$ queens solution, queens doubly centrosymmetric, pawns centrosymmetric

Queens with reflective symmetry

Figure: $21+14$ queens solution, queens symmetric wrt reflection across central row

Reflective symmetry for queens

Proposition

Given a solution to the $n+k$ queens problem (with $n>1$),
(1) the queens are not symmetric with respect to reflection across a diagonal,

Reflective symmetry for queens

Proposition

Given a solution to the $n+k$ queens problem (with $n>1$),
(1) the queens are not symmetric with respect to reflection across a diagonal,
(2) if n is even, the queens are not symmetric with respect to vertical or horizontal reflection, and

Reflective symmetry for queens

Proposition

Given a solution to the $n+k$ queens problem (with $n>1$),
(1) the queens are not symmetric with respect to reflection across a diagonal,
(2) if n is even, the queens are not symmetric with respect to vertical or horizontal reflection, and
(3) if $n=2 s+1$ and the queens are symmetric with respect to vertical or horizontal reflection, then $k \geqslant s+1$.

References

- N+k Queens Problem Page: npluskqueens.info
- n-Queens bibliography: www.liacs.nl/home/kosters/nqueens/
- M. Kraitchik, Mathematical Recreations, 2nd ed., Dover Publications Inc., New York, 1953.

