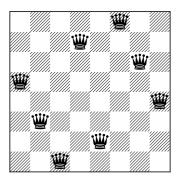
How Many Queens?


Doug Chatham Morehead State University

KYMAA Annual Meeting March 27, 2015

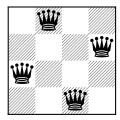
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

N Queens Problem

- *n* queens on $n \times n$ chessboard
- no two queens on same row, column, or diagonal

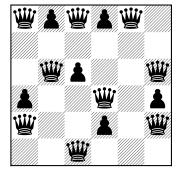
▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Maximum Queens Problem


"What is the maximum number of [mutually nonattacking] queens one can place on an $n \times n$ board if one can block as many squares as he needs?" (Zhao, 1998)

1 on 2×2

4 on 3×3



 $4 \text{ on } 4 \times 4$

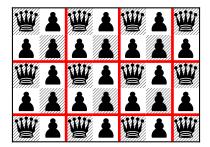
More solutions

9 on 5×5

9 on 6×6

ヘロト 人間 とくほ とくほとう

э

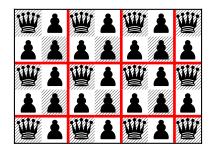


For an $n \times n$ board, the answer is $\left\lceil \frac{n}{2} \right\rceil^2$.

Answer for rectangular board

For an $m \times n$ board, the answer is $\left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil$.

(c.f. kings independence number)

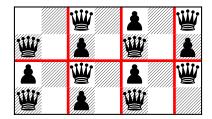

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Min Pawns for Max Queens Problem

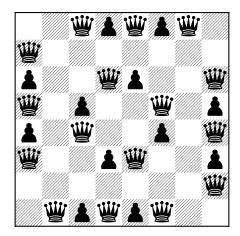
On an $m \times n$ board, how many squares do we need to block in order to place $M := \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil$ mutually nonattacking queens on the board?

▲□▶▲□▶▲□▶▲□▶ □ のQで

How many pawns? (*m*, *n* odd) If both *m* and *n* odd, just one possible arrangement, with pawns in all squares unoccupied by queens.

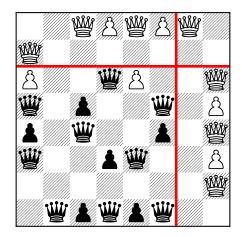


mn - M pawns

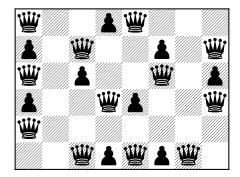

(日)

How many pawns? (*m* or *n* even)

If *m* or *n* even, need at most M - 2 pawns.

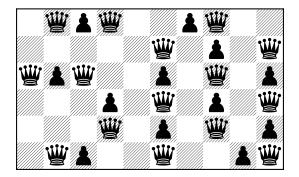

 $m = n = 4k, k \ge 1$

M-4 pawns

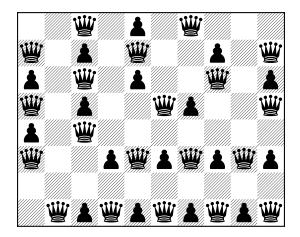

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

 $m = n = 4k - 2, k \ge 1$

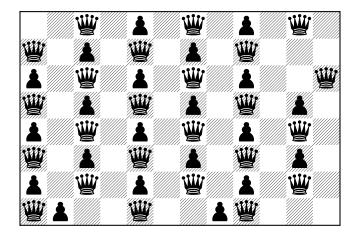
M-3 pawns


6×8

M-3 pawns


◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

6×10


M-3 pawns

8×10

M-3 pawns

8 imes 12

M-3 pawns

Open Problems

- Minimum number of pawns for *m* or *n* even?
- Number of arrangements for *m* or *n* even?

- How many pawns are needed to place fewer than *M* queens?
- How about other types of board (e.g. torus)?

References

- Bell, J. & Stevens, B. (2009). A survey of known results and research areas for *n*-queens. Discrete Math. 309, no. 1, 1-31.
- Watkins, J. J., Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004.
- N+k Queens Problem Pages: http://npluskqueens.info
- NEOS server at http://www.neos-server.org/neos/

Any questions?