The Maximum Queens Problem on a Rectangular Board

Doug Chatham Morehead State University

> MOVES Conference August 4, 2015

N Queens Problem

- \blacksquare *n* queens on $n \times n$ chessboard
- no two queens on same row, column, or diagonal

More Than N Queens

 pawn between queens in same row, column, or diagonal – pawns block queen attacks

Maximum Queens Problem

"What is the maximum number of [mutually nonattacking] queens one can place on an $n \times n$ board if one can block as many squares as he needs?" (Zhao, 1998)

 $4 \text{ on } 4 \times 4$

More Solutions

9 on 5×5

9 on 6×6

Answer

For an $n \times n$ board, the answer is $\left\lceil \frac{n}{2} \right\rceil^2$.

Answer for Rectangular Board

For an $m \times n$ board, the answer is $\left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil$.

(c.f. kings independence number)

Min Pawns for Max Queens Problem

On an $m \times n$ board, how many squares do we need to block in order to place $Q(m,n) := \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil$ mutually nonattacking queens on the board?

How Many Pawns? (*m*, *n* odd)

If both *m* and *n* odd, just one possible arrangement, with pawns in all squares unoccupied by queens.

mn - Q(m, n) pawns

How Many Pawns? (*m* or *n* even)

If m or n even, need at most Q(m, n) - 2 pawns.

m, n even, m = n

m, n even, m = n

Q(m,n) - 3 pawns

m, n even, m = n

Q(m,n) - 3 pawns

$m, n \text{ even}, m < n, \text{ and } m \equiv 2 \pmod{4}$

Q(m,n) - 3 pawns

$m, n \text{ even}, m < n, \text{ and } m \equiv 0 \pmod{4}$

Q(m, n) - 3 pawns

Q(m,n) - 4 pawns

Q(m,n) - 4 pawns

Maximum Rooks

$$R(m,n) = \lceil \frac{mn}{2} \rceil$$

Maximum Bishops (*m* and *n* even)

$$B(m,n) = \max\{n\lceil \frac{m}{2}\rceil, m\lceil \frac{n}{2}\rceil\}$$

Maximum Bishops (*m* or *n* odd)

$$B(m,n) = \max\{n\lceil \frac{m}{2}\rceil, m\lceil \frac{n}{2}\rceil\}$$

Open Problems

- \blacksquare Minimum pawns for m or n even?
- Number of arrangements for *m* or *n* even?
- Minimum pawns to place r < Q(m, n) queens?
- Maximum queens for fixed *p* pawns?
- Other board types (e.g. torus)?

References

- Bell, J. & Stevens, B. (2009). A survey of known results and research areas for *n*-queens. Discrete Math. 309, no. 1, 1-31.
- Burchett, P. & Chatham, D. Some results for chessboard separation problems. In preparation.
- Watkins, J. J., Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004.

References, Continued

- N+k Queens Problem Pages: http://npluskqueens.info
- NEOS server at http://www.neos-server.org/neos/

Any questions?