The $N-k$ Queens Problem

Doug Chatham
Morehead State University

MOVES Conference
New York NY
August 5, 2013

N Queens Problem

- n queens on $n \times n$ chessboard

■ no two queens are on same row, column, or diagonal

$N+k$ Queens Problem

$\square n+k$ queens, k pawns on $n \times n$ chessboard

- pawn between queens in same row, column, or diagonal - pawns block queen attacks

$N-k$ Queens Problem

- pawns do not block attacks
- goal: reduce "queens independence number" to $n-k$
■ at most $n k$ pawns needed

Sometimes as easy as coloring

Proposition: To reduce rooks independence number to $n-k$, we need $n k$ pawns.

Proposition: If we can " n-color the queens graph", then to reduce queens independence number to $n-k$, we need $n k$ pawns.

When can we do that?

Proposition (Iyer and Menon, 1966): We can n-color the queens graph for all $n=6 j \pm 1$.

Proposition (Vasquez, 2006): If $n=6 j \pm 1$ and $p=12,14,15,16,18,20,21,22,24,26,28,32$, we can $n p$-color the queens graph on an $n p \times n p$ board.

However. . .

■ infinitely many open cases, starting with $n=27$

- cannot n-color the queens graph for

$$
n=2,3,4,6,8,9,10
$$

$n=4, k=1$

Claim: 2 pawns neccessary and sufficient

Hitting Sets

■ To reduce independence number below r, need pawns to "hit" every arrangement of r nonattacking queens.

- Can find hitting sets through 0/1 Integer Programming.

0/1 Integer Programming

For each board position (i, j), let

$$
x_{i, j}= \begin{cases}1 & \text { if }(i, j) \text { included } \\ 0 & \text { otherwise }\end{cases}
$$

Minimize $\sum_{i, j} x_{i, j}$ s.t. for each arrangement A of r nonattacking queens,

$$
\sum_{(i, j) \in A} x_{i, j} \geqslant 1
$$

$n=4, k=1$

2 pawns

$n=4, k=2$

6 pawns

$n=4, k=3$

11 pawns

$n=6, k=1$

$n=6, k=2$

$n=6, k=3$

$n=6, k=4$

$n=6, k=5$

$n=8,9,10, k=1$

n pawns in each case

Open Problems

- How many pawns needed?

Conjecture: For $n \geqslant 7$, to reduce the queens independence number to $n-k$, we need $n k$ pawns.
■ How many hitting sets of minimum cardinality?

$n \backslash k$	1	2	3	4	5	6
4	16	12	8	1	-	-
5	120	646	254	32	1	-
6	1296	$?$	$?$	$?$	$?$	1

Open Problems, continued

■ How much difference between blocking and non-blocking pawns?

\square Combine with initial n-queens problem?
■ Frustr8tor with Barricade

Open Problems, concluded

■ Other pieces and board shapes?

- Reduce other parameters? (domination, total domination, etc.)

References

■ Bell, J. \& Stevens, B. (2009). A survey of known results and research areas for n-queens. Discrete Math. 309, no. 1, 1-31.
■ Burchett, P. \& Chatham, D. (2013). Some results for chessboard separation problems. Submitted to Util. Math.

- N+k Queens Problem Pages: http://npluskqueens.info

References, continued

■ Chvátal, V. Colouring the queen graphs: http://users.encs.concordia.ca/~chvatal/ queengraphs.html
■ Fijany, A., \& Vatan, F. (2004). New approaches for efficient solution of hitting set problem.
■ Vasquez, M. (2006). Coloration des graphes de reines. C. R. Acad. Sci. Paris, Ser. I 342, 157-160.

Any questions?

