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Each diagram below shows the minimum known number of pawns whose placement
on the given board will allow the placement of the indicated number of mutually nonat-
tacking queens.

5× 5 boards

5 l0Z0Z
4 0ZqZ0
3 Z0Z0l
2 0l0Z0
1 Z0ZqZ

a b c d e

5 queens and 0 pawns

5 Z0l0Z
4 qZpZ0
3 o0l0Z
2 qZpZq
1 Z0l0Z

a b c d e

6 queens and 3 pawns

5 ZqoqZ
4 0Z0Z0
3 lplpl
2 0Z0Z0
1 ZqoqZ

a b c d e

7 queens and 4 pawns

5 lpZ0l
4 pZqZp
3 l0o0l
2 pZqZp
1 l0Zpl

a b c d e

8 queens and 7 pawns

5 lplpl
4 popop
3 lplpl
2 popop
1 lplpl

a b c d e

9 queens and 16 pawns
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6× 6 boards

6 0l0Z0Z
5 Z0ZqZ0
4 0Z0Z0l
3 l0Z0Z0
2 0ZqZ0Z
1 Z0Z0l0

a b c d e f

6 queens and 0 pawns

6 0ZqoqZ
5 l0Z0Z0
4 0Z0Z0l
3 Z0ZqZp
2 0l0o0l
1 Z0ZqZ0

a b c d e f

8 queens and 3 pawns

6 0ZqZ0Z
5 l0o0Zq
4 0ZqZ0Z
3 Z0Z0l0
2 0l0Z0Z
1 Z0ZqZ0

a b c d e f

7 queens and 1 pawn

6 qoqoqZ
5 Z0Z0Z0
4 0lpZ0l
3 o0ZqZp
2 qZ0o0l
1 Z0l0Z0

a b c d e f

9 queens and 6 pawns

7× 7 boards

7 l0Z0Z0Z
6 0ZqZ0Z0
5 Z0Z0l0Z
4 0Z0Z0Zq
3 ZqZ0Z0Z
2 0Z0l0Z0
1 Z0Z0ZqZ

a b c d e f g

7 queens and 0 pawns

7 Z0Z0l0Z
6 0ZqZ0Z0
5 l0o0ZqZ
4 0ZqZ0Z0
3 Z0Z0Z0l
2 0l0Z0Z0
1 Z0ZqZ0Z

a b c d e f g

8 queens and 1 pawn
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7 Z0l0Z0Z
6 0Z0ZqZ0
5 ZqZ0o0l
4 0Z0l0Z0
3 l0o0ZqZ
2 0ZqZ0Z0
1 Z0Z0l0Z

a b c d e f g

9 queens and 2 pawns

7 Z0Z0lpl
6 0ZqZ0Z0
5 l0Z0oqZ
4 0Z0l0Zp
3 Zqo0Z0l
2 0Z0ZqZ0
1 Z0l0Z0Z

a b c d e f g

10 queens and 4 pawns

7 Z0lpZ0l
6 0Z0ZqZp
5 ZqZ0o0l
4 0Z0l0Z0
3 l0o0ZqZ
2 pZqZ0Z0
1 lpZ0l0Z

a b c d e f g

11 queens and 6 pawns

7 ZqoqoqZ
6 0Z0Z0Z0
5 lplplpl
4 0Z0Z0Z0
3 ZqoqoqZ
2 0Z0Z0Z0
1 Z0lpl0Z

a b c d e f g

12 queens and 8 pawns

7 Z0l0o0l
6 qZpZqZp
5 o0l0o0l
4 qZpZqZp
3 o0l0o0l
2 qZpZqZ0
1 Z0l0Z0Z

a b c d e f g

13 queens and 10 pawns

7 ZqoqoqZ
6 0Z0Z0Z0
5 lplplpl
4 0Z0Z0Z0
3 oqoqoqZ
2 0Z0Z0Zp
1 lplplpl

a b c d e f g

14 queens and 12 pawns
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7 lplplpl
6 0Z0Z0Z0
5 oqoqoqo
4 0Z0Z0Z0
3 lplplpl
2 popopop
1 lplplpl

a b c d e f g

15 queens and 20 pawns

7 lplplpl
6 popopop
5 lplplpl
4 popopop
3 lplplpl
2 popopop
1 lplplpl

a b c d e f g

16 queens and 33 pawns

8× 8 boards

8 0Z0Z0l0Z
7 Z0ZqZ0Z0
6 0Z0Z0ZqZ
5 l0Z0Z0Z0
4 0Z0Z0Z0l
3 ZqZ0Z0Z0
2 0Z0ZqZ0Z
1 Z0l0Z0Z0

a b c d e f g h

8 queens and 0 pawns

8 0Z0ZqZ0Z
7 Z0l0Z0Z0
6 qZpZ0Z0l
5 Z0ZqZ0Z0
4 0Z0Z0ZqZ
3 Z0l0Z0Z0
2 0Z0Z0l0Z
1 ZqZ0Z0Z0

a b c d e f g h

9 queens and 1 pawns

8 0Z0ZqZ0Z
7 Z0l0o0l0
6 qZpZqZ0Z
5 Z0l0Z0Z0
4 0Z0Z0Z0l
3 Z0Z0ZqZ0
2 0Z0l0Z0Z
1 ZqZ0Z0Z0

a b c d e f g h

10 queens and 2 pawns

8 0Z0l0Z0Z
7 ZqZpZ0l0
6 0Z0ZqZ0Z
5 Z0l0o0Zq
4 qo0Z0l0Z
3 Z0ZqZ0Z0
2 0l0Z0Z0Z
1 Z0Z0l0Z0

a b c d e f g h

11 queens and 3 pawns
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8 0lpl0Z0Z
7 Z0Z0ZqZ0
6 qoqo0Z0l
5 Z0Z0l0Z0
4 0lpZ0oqZ
3 Z0ZqZ0Z0
2 0Z0Z0l0Z
1 Z0l0Z0Z0

a b c d e f g h

12 queens and 5 pawns

8 0ZqoqZ0Z
7 Z0Z0Z0l0
6 0lplpZpZ
5 Z0Z0Z0l0
4 qoqoqZ0Z
3 Z0Z0Z0Zq
2 0lpZ0l0Z
1 Z0ZqZ0Z0

a b c d e f g h

13 queens and 7 pawns

8 0Z0Z0l0Z
7 Z0ZqZpZq
6 0l0o0l0o
5 Z0ZqZpZq
4 0Z0o0l0o
3 lpl0ZpZq
2 0Z0Z0l0Z
1 ZqoqZ0Z0

a b c d e f g h

14 queens and 9 pawns

8 0lpZ0l0Z
7 Z0ZqZpZq
6 qZ0o0l0o
5 Zpl0ZpZq
4 0Z0Z0l0o
3 Zqoqo0Zq
2 0Z0Z0Z0Z
1 Z0lplpl0

a b c d e f g h

15 queens and 11 pawns

8 0ZqoqoqZ
7 l0Z0Z0Z0
6 pZ0lpZ0l
5 l0o0ZqZp
4 pZqZ0o0l
3 l0Zpl0Zp
2 0Z0Z0Z0l
1 ZqoqoqZ0

a b c d e f g h

16 queens and 12 pawns
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Sources

The n-queens problem

The patterns with no pawns are well-known solutions to the n queens problem. For
more information on this problem, see Bell, J. & Stevens, B. (2009). A survey of known
results and research areas for n-queens. Discrete Math. 309, no. 1, 1-31.

The n + k-queens problem

The patterns where the number of queens equals the order of the board plus the number
of pawns (7 queens with 1 pawn on a 6× 6 board; 8 queens with 1 pawn and 9 queens
with 2 pawns on a 7× 7 board; and 9 queens with 1 pawn, 10 queens with 2 pawns, and
11 queens with 3 pawns on an 8×8 board) are examples of solutions to the “n+k-queens
problem”. See http://npluskqueens.info for more information on this problem.

Binary integer programming

To find each of the other patterns in this handout, I formulated the problem of finding
the minimum number of pawns needed to allow placement of Q mutually nonattacking
queens on a given size board as a binary integer programming problem and submitted
the problem to the NEOS server (http://www.neos-server.org/neos/). Here is the for-
mulation of the “minimum pawns for Q queens problem” on an n× n board:

Suppose we have an n× n board with rows labeled 0, . . . , n− 1 and columns labeled
0, . . . , n− 1.

For i = 0, . . . , n− 1 and j = 0, . . . , n− 1, let qij = 1 if and only if there is a queen in
row i and column j and qij = 0 otherwise. Also, for each i and j, let pij = 1 if and only
if there is a pawn in row i and column j and pij = 0 otherwise.

Minimize Σi,jpij (the number of pawns on the board) subject to the following con-
straints:

1.
∑

i,j qi,j = Q. (There are exactly Q queens on the board.)

2. For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1, 0 ≤ qij + pij ≤ 1. (A queen cannot occupy
the same space as a pawn.)

3. For 0 ≤ i ≤ n− 1 and 0 ≤ j1 < j2 ≤ n− 1,
∑j2

j=j1
(qij − pij) ≤ 1. (No segment of

a row has two queens without a pawn between them.)

4. For 0 ≤ j ≤ n− 1 and 0 ≤ i1 < i2 ≤ n− 1,
∑i2

i=i1
(qij − pij) ≤ 1. (No segment of a

column has two queens without a pawn between them.)

5. a) For 0 < s ≤ n− 1 and 0 ≤ j1 < j2 ≤ s,
∑j2

j=j1
qs−j,j − ps−j,j ≤ 1.
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b) For n ≤ s < 2n−2 and s−(n−1) ≤ j1 < j2 ≤ n−1,
∑j2

j=j1
qs−j,j−ps−j,j ≤ 1.

(No segment of a “sum diagonal” – the squares (i, j) for which i + j = s for some
constant s – has two queens without a pawn between them.)

6. a) For n− 1 > d ≥ 0 and 0 ≤ j1 < j2 ≤ (n− 1)− d,
∑j2

j=j1
qd+j,j − pd+j,j ≤ 1

b) For −1 ≥ d > −(n− 1) and −d ≤ j1 < j2 ≤ n− 1,
∑j2

j=j1
qd+j,j − pd+j,j ≤ 1

(No segment of a “difference diagonal” – the squares (i, j) for which i− j = d for
some constant d – has two queens without a pawn between them.)

With a few changes, we get the integer programming formulation of the “minimum
pawns for maximum queens problem” on an m× n board:

Suppose we have an m×n board with rows labeled 0, . . . ,m− 1 and columns labeled
0, . . . , n−1, and m ≤ n. (m ≤ n is an arbitrary choice which makes items 5 and 6 easier
to state.)

For i = 0, . . . ,m− 1 and j = 0, . . . , n− 1, let qij = 1 if and only if there is a queen in
row i and column j and qij = 0 otherwise. Also, for each i and j, let pij = 1 if and only
if there is a pawn in row i and column j and pij = 0 otherwise.

Minimize Σi,jpij subject to the following constraints:

1.
∑

i,j qi,j = dm
2
edn

2
e. (There are exactly dm

2
edn

2
e queens on the board.)

2. For 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, 0 ≤ qij + pij ≤ 1. (A queen cannot occupy
the same space as a pawn.)

3. For 0 ≤ i ≤ m− 1 and 0 ≤ j1 < j2 ≤ n− 1,
∑j2

j=j1
(qij − pij) ≤ 1. (No segment of

a row has two queens without a pawn between them.)

4. For 0 ≤ j ≤ n− 1 and 0 ≤ i1 < i2 ≤ m− 1,
∑i2

i=i1
(qij − pij) ≤ 1. (No segment of

a column has two queens without a pawn between them.)

5. a) For 0 < s ≤ m− 1 and 0 ≤ j1 < j2 ≤ s,
∑j2

j=j1
qs−j,j − ps−j,j ≤ 1.

b) For m ≤ s < m+n−2 and s−(m−1) ≤ j1 < j2 ≤ n−1,
∑j2

j=j1
qs−j,j−ps−j,j ≤

1.

(No segment of a “sum diagonal” – the squares (i, j) for which i + j = s for some
constant s– has two queens without a pawn between them.)

6. a) For m− 1 > d ≥ 0 and 0 ≤ j1 < j2 ≤ (n− 1)− d,
∑j2

j=j1
qd+j,j − pd+j,j ≤ 1

b) For −1 ≥ d > −(m− 1) and −d ≤ j1 < j2 ≤ n− 1,
∑j2

j=j1
qd+j,j − pd+j,j ≤ 1

(No segment of a “difference diagonal” – the squares (i, j) for which i− j = d for
some constant d – has two queens without a pawn between them.)
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