Reflections on the *n* + *k* **dragon kings problem**

Doug Chatham

Department of Mathematics and Physics Morehead State University Morehead, Kentucky (USA)

May 20, 2018

Dragon King: Rook + King

Doug Chatham (MSU)

N + *k* **Dragon Kings Problem**

- n + k dragon kings, k pawns on $n \times n$ chessboard
- no two dragon kings attack each other

Existence of solutions

Proposition

There is a solution when $k \ge 0$ and $n \ge k + 5$.

n = k + 5

n = k + 5: continued

$n \ge k+5$

Doug Chatham (MSU)

May 20, 2018 7 / 20

Proposition

There is a solution when $k \ge 12$ and $n \ge k$.

Number of solutions

For k = 0, see OEIS Sequence A002464.

$n \setminus k$	0	1	2	3	4
4	2	0	0	0	0
5	14	0	0 0		0
6	90	32	0	0	0
7	646	762	124	0	0
8	5242	14412	9056	1688	94
9	47622	250326	380776	216678	48374
10	479306	4252504	12538132	16006424	9629406

Number of n + k dragon kings problem solutions for $4 \le n \le 10$ and $0 \le k \le 4$

Symmetries

Lemma

Each solution corresponds to an $n \times n$ alternating sign matrix with k -1s in which no two 1's are adjacent.

Γ0	0	0	1	0	0	٦0
0	0	0	0	0	1	0
0	0	1	0	0	0	0
0	0	0	0	1	0	0
0	1	0	-1	0	0	1
0	0	0	1	0	0	0
1	0	0	0	0	0	0

Symmetries

Proposition

No solution (with n > 1) is symmetric with respect to vertical or horizontal reflection.

Corollary

We can partition the solution set into 5 symmetry classes.

Doug Chatham (MSU)

The n + k dragon kings problem

May 20, 2018 11 / 20

1. Ordinary

NOT symmetric w.r.t. reflection or nontrivial rotation

Proposition

These exist for $n \ge k + 5$.

2. Centrosymmetric

Symmetric w.r.t. 180° rotation, but not 90° rotation or any reflection

Proposition

If k even, these exist for $n \ge 2k + 6$. If n and k odd, these exist for $n \ge 2k + 5$.

Doug Chatham (MSU)

The n + k dragon kings problem

May 20, 2018 13 / 20

3. Doubly centrosymmetric

Symmetric w.r.t. 90° rotation, but not any reflection

Proposition

A doubly centrosymmetric solution exists if any of the following conditions hold:

■
$$n \equiv 0 \pmod{4}$$
, $k \equiv 0 \pmod{4}$, and
 $n \ge \max\{2k, 4\}$

②
$$n \equiv 1 \pmod{4}, k \equiv 0 \pmod{4}, and$$

 $n \ge \max{2k + 1, 5}$

■
$$n \equiv 3 \pmod{4}$$
, $k \equiv 1 \pmod{4}$, and
 $n \ge \max\{2k + 1, 11\}$

4. Monodiagonally symmetric

Symmetric w.r.t. reflection across either main diagonal or antidiagonal, but not both. Not symmetric w.r.t. rotation.

Proposition

These exist for $n \ge 2k + 5$.

Doug Chatham (MSU)

May 20, 2018 16 / 20

5. Bidiagonally symmetric

Symmetric w.r.t. reflection across both the main diagonal and antidiagonal. Also symmetric w.r.t. 180° rotation, but not 90° rotation.

Proposition

A bidiagonally symmetric solution exists if

- k even and $n \ge 2k + 6$, or
- n and k odd and $n \ge 2k + 5$

Many questions remain.

- How much can we tighten the bounds?
- How many solutions?
- What happens on other types of board (cylinder, torus, etc.)?
- What happens with different restrictions (e.g, not allowing pieces on adjacent squares)?

References

- H. Bodlaender, F. Duniho, Shogi: Japanese chess, 2017. http://www.chessvariants.com/shogi.html
- D. Chatham, Independence and domination on shogiboard graphs, *Recreational Mathematics Magazine*, 8(2017), 25–37.
- R.D. Chatham, M. Doyle, R.J. Jeffers, W.A. Kosters, R.D. Skaggs, J.A. Ward, Centrosymmetric solutions to chessboard separation problems, *Bulletin of the Institute of Combinatorics and its Applications*, **65**(2012), 6–26.
- MiniZinc:available at http://www.minizinc.org/

Any questions?