Reflections on the $n+k$ dragon kings problem

Doug Chatham

Department of Mathematics and Physics
Morehead State University
Morehead, Kentucky (USA)

May 20, 2018

Dragon King: Rook + King

$N+k$ Dragon Kings Problem

- $n+k$ dragon kings, k pawns on $n \times n$ chessboard - no two dragon kings attack each other

Existence of solutions

Proposition

There is a solution when $k \geq 0$ and $n \geq k+5$.

$n=k+5$

0				\square	
		$\boxed{ }$			
\square				0	
			$\boxed{0}$		\square
0	\square		0	0	
				\square	

$n=k+5:$ continued

0		0		
0				0
			0	
	0			0
				0
0	0		0	0

$n \geq k+5$

Proposition

There is a solution when $k \geq 12$ and $n \geq k$.

Number of solutions

For $k=0$, see OEIS Sequence A002464.

$n \backslash k$	0	1	2	3	4
4	2	0	0	0	0
5	14	0	0	0	0
6	90	32	0	0	0
7	646	762	124	0	0
8	5242	14412	9056	1688	94
9	47622	250326	380776	216678	48374
10	479306	4252504	12538132	16006424	9629406

Number of $n+k$ dragon kings problem solutions for $4 \leq n \leq 10$ and $0 \leq k \leq 4$

Symmetries

Lemma

Each solution corresponds to an $n \times n$ alternating sign matrix with $k-1 s$ in which no two 1 's are adjacent.

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Symmetries

Proposition

No solution (with $n>1$) is symmetric with respect to vertical or horizontal reflection.

Corollary

We can partition the solution set into 5 symmetry classes.

1. Ordinary

NOT symmetric w.r.t. reflection or nontrivial rotation

Proposition

These exist for $n \geq k+5$.

2. Centrosymmetric

Symmetric w.r.t. 180° rotation, but not 90° rotation or any reflection

Proposition

If k even, these exist for $n \geq 2 k+6$. If n and k odd, these exist for $n \geq 2 k+5$.

3. Doubly centrosymmetric

Symmetric w.r.t. 90° rotation, but not any reflection

Proposition

A doubly centrosymmetric solution exists if any of the following conditions hold:
(1) $n \equiv 0(\bmod 4), k \equiv 0(\bmod 4)$, and
$n \geq \max \{2 k, 4\}$
(2) $n \equiv 1(\bmod 4), k \equiv 0(\bmod 4)$, and
$n \geq \max \{2 k+1,5\}$
(3) $n \equiv 3(\bmod 4), k \equiv 1(\bmod 4)$, and
$n \geq \max \{2 k+1,11\}$

4. Monodiagonally symmetric

Symmetric w.r.t. reflection across either main diagonal or antidiagonal, but not both. Not symmetric w.r.t. rotation.

Proposition

These exist for $n \geq 2 k+5$.

5. Bidiagonally symmetric

Symmetric w.r.t. reflection across both the main diagonal and antidiagonal. Also symmetric w.r.t. 180° rotation, but not 90° rotation.

Proposition

A bidiagonally symmetric solution exists if

- k even and $n \geq 2 k+6$, or
- n and k odd and $n \geq 2 k+5$

Open problems

Many questions remain.

- How much can we tighten the bounds?
- How many solutions?
- What happens on other types of board (cylinder, torus, etc.)?
- What happens with different restrictions (e.g, not allowing pieces on adjacent squares)?

References

- H. Bodlaender, F. Duniho, Shogi: Japanese chess, 2017. http://www.chessvariants.com/shogi.html
- D. Chatham, Independence and domination on shogiboard graphs, Recreational Mathematics Magazine, 8(2017), 25-37.
- R.D. Chatham, M. Doyle, R.J. Jeffers, W.A. Kosters, R.D. Skaggs, J.A. Ward, Centrosymmetric solutions to chessboard separation problems, Bulletin of the Institute of Combinatorics and its Applications, 65(2012), 6-26.
- MiniZinc:available at http://www.minizinc.org/

> Any questions?

